If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-16d+29=0
a = 1; b = -16; c = +29;
Δ = b2-4ac
Δ = -162-4·1·29
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{35}}{2*1}=\frac{16-2\sqrt{35}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{35}}{2*1}=\frac{16+2\sqrt{35}}{2} $
| -10a−10=-70 | | 7/5m+3=-4 | | 2b-1/7=9 | | x+(x+7)=196 | | -4.8+x=9.2 | | 1/4m+1/2=1/4m-1/2 | | (3x+13)=103 | | −3/5t=15 | | 6x=3.600 | | 5.8(7.9r-4.4)=21.4 | | 3x-7=x-10 | | 4w−7=6w+31 | | 4r2=-28r | | 17+a)2=2209 | | 3x+5.2=x+12 | | 6-2(p(4)=108 | | 20p-2p=4p=20p-6p | | −10=40+5r | | 10r^2-r-3=0 | | −28r=4r2. | | 42(p+10)=2352 | | 2x+2.5=10 | | 2x-1/6-3x+2/3=1/2 | | 16^x=1/64^x-2 | | 12^r=13 | | 4x+6=2x•6 | | 15/y=9/15 | | 16^x=(1/64)^x-2 | | 4x-1=30 | | 10y+90=80 | | 3(2x+7)-2x=3 | | 15x-2-2x=10-2 |